

CORRUGATED CONDUIT IN COILS

For underground applications from 38 through 200 mm (1½ to 8 inch), curvable conduit

TECHNICAL SPECIFICATIONS

Description

Curvable corrugated conduit dual wall (S-type) outer wall in red, stripe line in white and inner wall in white color; made from high density polyethylene (HDPE) virgin compounds, in coils, for underground electrical wiring systems.

Scope

This product specification describes ADSM curvable corrugated conduit double wall, in nominal diameters from 38 through 200 mm (1½ to 8 inch); for use in underground applications of low, medium and high voltage electrical wiring systems.

Characteristics

- The double wall structure (corrugated outer layer and smooth inner liner) optimizes the performance of the most important mechanical characteristics, such as flattening, brittleness, pipe stiffness, etc.
- Resistant to moisture, chemical and corrosive agents of the soil; as well as UV rays assuring a long life and durability after pipe installation.
- Low friction coefficient, between 0.15 y 0.20, to facilitate wiring.
- Availability of supply different lengths according with the requirements of the project or customer.
- Excellent ability to absorb trajectory direction changes; minimum radius of curvature is 10 times outside conduit diameter.
- Every coil includes end cap and plastic pre-guide to facilitate the traction of the main guide.

Requirements

- Accomplish the CFE DF110-23 standard specification.
- Prototype acceptance certificate issued by CFE-LAPEM.
- Release of our manufacturing pipe batches by CFE / LAPEM

Uses

For underground electrical systems, built by open-pit channeling (ditch), either direct buried or concrete encased, to:

- Low and medium voltage electrical systems in commercial and industrial installations, public lighting, apartment development, logistics and industrial parks, hotels, etc.; the electrical installation standard NOM-001-SEDE-2012, allows the use from 38 mm through 150 mm (1.5 to 6 inch) inner diameter conduit.
- Low and medium voltage electrical distribution systems, the CFE construction specification of underground electrical systems DCCSSUBT allows the use from 50 mm through 100 mm (2 to 4 inch) inner diameter conduit.
- High voltage electrical transmission systems, the CFE design specification for underground transmission lines DCDLTS01 allows the use from 150 mm through 300 mm (6 to 12 inch) inner diameter conduit.

CO-FO-54-03 Rev.01

Página 1 de 3

FT-S16-01-08 Rev.00 / Oct 2019

CORRUGATED CONDUIT IN COILS

For underground applications from 38 through 200 mm (1½ to 8 inch), curvable conduit

TECHNICAL SPECIFICATIONS

Dimensions

Table 1. HDPE curvable corrugated conduit dimensions

		Inner diameter (average)	Outer diameter (average)	Available total area	Length by coil
(mm)	(inch)	(mm)	(mm)	(mm²)	(m)
38	1½	38	49.7	1 134	100
50	2	51	64.4	2 043	100
75	3	76	93.5	4 536	100
100	4	102	122.1	8 171	100
150	6	152	176	18 146	100
200	8	203	233.5	32 365	100
	diam (mm) 38 50 75 100 150	38 1½ 50 2 75 3 100 4 150 6	diameter (average) (mm) (inch) (mm) 38 1½ 38 50 2 51 75 3 76 100 4 102 150 6 152	diameter (average) (average) (mm) (inch) (mm) (mm) 38 1½ 38 49.7 50 2 51 64.4 75 3 76 93.5 100 4 102 122.1 150 6 152 176	diameter (average) (average) total area (mm) (inch) (mm) (mm) (mm²) 38 1½ 38 49.7 1 134 50 2 51 64.4 2 043 75 3 76 93.5 4 536 100 4 102 122.1 8 171 150 6 152 176 18 146

The pipe can be curved to a radius of 10 times its outer diameter.

Material properties

Curvable corrugated conduits are manufactured from high density polyethylene (HDPE) virgin compounds that comply with the requirements of the CFE DF110-23 specification (Table 2).

Table 2. HDPE virgin compounds properties

Property	Specification	Test method
Density	0.940 g/cm³ to 0.960 g/cm³	NMX-E-004-CNCP-2004 NMX-E-166-CNCP-2016
Melt index	0.1 to 0.4 g/10 min @ 190°C - 2.16 kg	NMX-E-135-CNCP-2004
Flexural modulus	553 to 1103 MPa (80 000 to 160 000 psi)	NMX-E-183-CNCP-2010
Tensile strength	10 MPa, minimum (1450 psi, minimum)	NMX-E-082-CNCP-2010
Slow Crack Growth Resistance	Test condition B (100% Igepal), 24 h and 50% of failure	NMX-E-184-CNCP-2003
Hydrostatic Strength Classification Not pressure rated		-
Color and UV stabilizer	Natural	NMX-E-034-CNCP-2014

CO-FO-54-03 Rev.01

Página 2 de 3

FT-S16-01-08 Rev.00 / Oct 2019

CORRUGATED CONDUIT IN COILS

For underground applications from 38 through 200 mm (1½ to 8 inch), curvable conduit

TECHNICAL SPECIFICATIONS

Mechanical specifications

ADS Mexicana curvable corrugated conduits comply with the mechanical specifications, requirements and test methods of the CFE DF110-23 specification (Table 3).

Table 3. HDPE curvable corrugated conduit mechanical specifications

Specification	Description	Test method
Pipe impact strength	There shall be no evidence of splitting, cracking, breaking, separation of corrugation seams, separation of the valley and liner, or combinations thereof, on any specimen when impact the specimen with an energy of 46.59 J	Section 7.4 of the NMX-E-242/1-ANCE-CNCP-2005
Pipe flattening	There shall be no evidence of splitting, cracking, breaking, separation of corrugation seams, separation of the valley and liner, or combinations thereof, on any specimen between parallel plates test when pipe inside diameter is reduced by 20%	NMX-E-014-CNCP-2014
Ovality	The difference between the minimum and maximum values of the inner diameter does not exceed 5%	NMX-E-021-CNCP-2006
Pipe stiffness	At least 345 kPa (50 psi) @ 5% of inner diameter deflection	NMX-E-208-CNCP-2015
Delamination	There shall be no evidence of a separation between the inner liner and outer corrugated wall when the specimen is cut circumferentially after flattening test	Section 7.5 of the NMX-E-242/1-ANCE-CNCP-2005
Environmental Stress Cracking Resistance	It does not exhibit cracks when cut a 90° transversal portion of pipe and bend three specimens reducing 20% of the length chord immersed in Igepal (100%) @ 50° C for 24 h	Section 7.6 of the NMX-E-242/1-ANCE-CNCP-2005
Joint integrity	Joints does not exhibit leaks when is applied a pressure of 0.03 MPa (4.35 psi) for 10 min	NMX-E-205-CNCP-2011

Installation

Installation must be carried out in accordance with the recommendations set forth in the CFE specifications DCCSSUBT and DCDLTS01, as well as in the ASTM D2321-18 standard.